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Notes for  the Improvement of the  Spat ia l  and 
Spectral  Data Class i f ica t ion  Method 

A. Bac k~round  

In the  corresponding par t  of a recent repor t  by the  author1 a 

deta i led  explanation was given f o r  the  present in te res t  i n  aon-supervised 

techniques f o r  the  automatic c l a s s i f i c a t i o n  of s a t e l l i t e  multispectrol 

ground scene da ta  v i s  a v i s  the  techniques involving supervised compu- 

tat ion.  A f ami l i a r i ty  with Jayroe's* report  i n  t h i s  a rea  is a l s o  presup- 

posed. 

B. Present Si tua t ion  

The author was asked t o  make a theore t ica l  evaluation of su's3 

and .Jayroe's2 qu i t e  d i f f e ren t  approaches t o  non-supervised c l a s s i f i c a t i o n  

of s a t e l l i t e  mult ispectral  ground scene data. The author chose t o  do 

t h a t  e f f o r t  i n  three  separate steps: (1) t o  evaluate su 's3 model f i r s t  

independently of Jayroevs2 model and t o  suggest any l i k e l y  improvements 

which would r e t a i n  the  same general idea of the  approach, (2) t o  do the  

same for  ~ a ~ r o e ' s ~  model, and (3) a f t e r  seeing the  e f fec t s  of the  changes 

by processing some data  with the  resul t ing  revised algorithms, t o  propose 

what new model might combine the  best  compatable pa r t s  o r  compromises 

from the  two models. The f i r s t  s t ep  was covsrcd i n  References 1 and 4. 

Reference 4 gives the  complete algorithm, which was given only f o r  the  

f i r s t  pass of the  da ta  i n  Reference 1, and which is included herein a s  

Appendix A. 



A. E q c r i p t i o n  

3 
Jayroe's' unsupervised fea ture  extract ion process was developed 

for  the analysis of :light data which has n spect ra l  channels responding 

to  each elemental area of the ground-scene which is resolved i n  rectangular 

coordinates x and y. H i s  method has four s tces ,  which cne can describe 

b r i e f ly  a s  follows: 

(1) A boundary map of the data  is produced by separating the 

data in to  homogeneous and inhomogeneous areas. Each resolut isa  element 

has a root mean square spect ra l  difference s, o r  s with respect t o  9 

the element which is adjacent t o  it in the  x o r  y direction. Any 

element where s, or  s is equal t o  o r  less than t h e  average of such values 
Y 

fo r  a l l  of the  elements in the scene Is c lass i f i ed  as a haomgmeous ele- 

ment; o thewise ,  t h e  element is c lass i f i ed  a s  a boundary. A d i g i t a l  

L a g e  of a boundary map is recorded on magnetic tape for  use i n  the  next 

s t a se  of processing. See Section 11. B. 1 for  cements. 

(2) The second s tage  is concerned with the  se lec t ion and 

s p a t i a l  merging of unkpown candidate features based upon the  homogeneity 

of the  ground scene, a s  displayed by t h e  boundary map which was recorded 

on magnetic tape in the  f i r s t  stage. See Section 11. B. 2 for  comnents. 

(3) The th i rd  stage of processing is  concerned with spect ra l  

\ 
merging of the  selected unknown candidate features. i n  t h i s  s tage  the  

I 

! 
decision, t o  merge or not t o  merge, is based en t i r e ly  upon spect ra l  

f 
i 

f information rather than the  s p a t i a l  information which was used i n  the 



second stage. The boundary and c l u s t e r  map tape gives the  locat ions of 

the  raw data  on the  raw data  tape belonging t o  each c lus ter .  The mean 

fea ture  vectors  and covariance matrices a r e  calculated fo r  each c lus te r .  

"These calculat ions a re  used t o  define decision boundaries with which t o  

physically surround the  data  belonging t o  a c l u s t e r  i n  n-dimensional 

space. The most general closed surface tha t  can be used t o  surround 

the  n-dimensional da ta  is an n-dimensional hyperellipse. The centroid 

of the  c l u s t e r  e l l i p s e  is given by the fea ture  vector mean values 
- 2 
kX k . . .I8 (quoting Jayroe ) . One makes ". . . a ro ta t ion ,  EQ, followed 

by a diagonal transformation, W . . . 'I "Thus, the  equat Lon of an 

n-dimensioffil e l l i p s e  i n  reduced form is obtained f o r  each c lus te r ,  and, 

in general, each c l u s t e r  w i l l  have a d i f f e ren t  coordinate system. The 

next s t ep  is t o  give a decision r u l e  f o r  determining how many c l u s t e r s  

ac tual ly  represent the  same feature... The decision r u l e  is  t h a t  two 

c lus te r s  represent the  same fea ture  i f  t h e  centroids of both c lus te r s  

a r e  contained i n  both c lus te r s1  el l ipses."  See Section 11. B. 3 f o r  

comnents and analysis.  

2 (4) Jayroe explains tha t  the  f i n a l  s tage  of processing is 

concerned with c lass i fy ing the  data  i n  t h e  d i g i t a l  image of the  ground 

scene and with showing the  locat ion and d i s t r ibu t ion  of the  features.  

The inputs t o  t h i s  s iage of processing a r e  the  raw data  tape, the  

s t a t i s t i c s  f o r  each c las s ,  and the  boundary tape. The decision r u l e  which 

2 Jayroe chose fo r  c lass i fy ing a resolu t ion  element i n t o  a given c las s ,  

a d  the  bas i s  which he gave for  it, a r e  discussed with some analysis  i n  

Section 11. B. 4 herein. 



B. Aaalvsis and Evaluation 

1. Stage One: Boundary Happing 

~ayroe '  considers the equation of an e l l i p s e  i n  the 

(sx, sy) plane, involving quadratic and product terns. By using a l l  

of the  resolution elements i n  the ground scene he f i ads  the  sample mean 

2 2 values of s, , sy , and 8 s Those values are used t o  determine what 
x Y'  

transformation w i l l  a l idu  the coordinates with the principal  axes and 

give the  values of the semi-major and semi-minor axes of the  pa r t i cu la r  

e l l i p s e  which the sample mean values infer .  That par t icular  e l l i p s e  is 

then found i n  the  (s s ) coordinates a f t e r  the  inverse transformation, 
x' Y 

from which the  values of a ,  b, and c a r e  determined when rhe sample mean 

e l l i p s e  is 

2 + b s 2 + c s s  -1. 
Y X Y  

One could then say, a s  ~ a ~ r o e '  does, t h a t  the  decision is t o  c l a s s i f y  

a resolution element as being homogeneous unless the  l e f t  st+ of equa- 

t ion  (1) exceeds unity. O r ,  maybe one should say tha t  the  l e f t  s ide  of 

equation (1) is  a random variable such t h a t  the  sample estjmator of its 

mean is unity, and that  the  decision is t o  c l a s s i f y  a resolution element 

a s  being homogeneous i f  

where B is an adjustable parameter. One could give B a higher value 

than unity as  a trade-off against excessive computer time, up t o  same 

maxinnmr value of B beyond which experience would shaw tha t  boundary fonna- 

t i o n  would be dampened enough t o  reduce effect iveness materially. 



2. Stene Two: Cluster Formation 

Whereas, the  f i r s t  s tage ident i f ied  each resolution 

element of the grmnd scene as  being e i t h e r  a boundary element or  a 

homogeneous element, it became of in te res t  t o  see what is the smallest 

number of elements which a c lus te r  or  c l ass  could have. It seems tha t  

t h i s  depends on the  second stage. Clusters of homogeneous elements a re  

formed i n  the  second stage,  and the  resul t ing  c lus te r s  a r e  merged in to  

classes i n  the  th i rd  stage. The fourth stage then c l a s s i f i e s  each 

element as  belonging t o  or  not belonging t o  the established c l a s x s .  

2 Thus, every c l u s t e r  and every c lass  has a t  least p members; i.e., no 

element can be c lass i f i ed  unless it is  su f f i c ien t ly  nearly l i k e  those 

which c lus te r  i n  a homogeneous area which extends beyond a square array 

containing p2 elements. ~ a ~ r o e ~  suggests 100 elements fo r  the  pxp 

array. In contrast  t o  t h i s  the  models by su3 and by can 

c l a s s i f y  any isolated element which is  su f f i c ien t ly  nearly like any f i v e  

other elements (which do not w e n  have t o  be together). The resolution 

elemects i n  the  ERTS data are each about 79.2 meters (1120 mile) x 57.2 

meters; i.e., in p rac t i ca l  terms, a square f i e l d  of less than about 5/8 

square kilometer (one quarter  section) would not accept the  10 x 10 

array, and larger  f i e l d s  a r e  usually not e n t i r e l y  homogeneous. 

3. Stage Three: Spectral Merging 

a. Decision Rule 

In the  computations fo r  n spect ra l  channels, Jayroe 2 

made transformations (a ro ta t ion  Fk followed by a diagonal transformation 

Wk) t o  reduce t o  canonical form the  covariance matrix for each of the  



c l u s t e r s  of hmgeneous ground scene elements. This may be computationally 

e f f i c i e n t ;  also,  it f a c i l i t a t e s  theore t i ca l  derivat ions for  decision 

ru les  because the  transformed dinensiom become s t a t i s t i c a l l y  indepedent . 
.Tayroe's2 analysis  through his equation (26) is verf fied. Instead of 

~ a y r o e ' s ~  equation (28) for  the  inverse s imi la r i ty  S-' for  the  c lus te r  

and t h e  vector v (which i s  the  mean which k's transformed coordinate 
k 

system gave f o r  c l u s t e r  k) as  viewed within 1's coordinate system, one 

ge t s  

when the  c ' s  a r e  variances and where the  term 2n, instead of just n, 

correc ts  fo r  a term c which Jayroe inadvertently omitted f r m  the  
PP k 

bracketed fac tor  i n  h i s  equation (27). 

For the  expected value of SO' i n  t h i s  equation (3) 

2 Jayroe jus t  replaced the  sunxnation by n. That r e s u l t  would seem t o  be. 

due to (2) an oversight in which the vk m y  have been considered to  

represent an individual resolu t ion  element a s  a prospective member of the  

c lus te r  II, whereas it is  instead the  mean of au e n t i r e  c l u s t e r  k, followed 

by (2) an assumption t h a t  the  sumnation would have approximately a chi-  

square d i s t r ibu t ion  with n degrees of freedom, and fur ther  (3) an aseump- 

t i o n  t h a t  the  coeff ic ient  i n  equation (3) does not vary appzeciably. 



Attent ion w i l l  be given t o  the  po in t s  mentioned about 

- 1 
S i n  equation (5). F i r s t ,  though, i t  may be recognized a9 an expedient 

departure  from r igo r  i n  t h a t  the  n-dlmeusional space for n spec t r a l  

channels of da ta  has for  each c l u s t e r  3 sepa ra t e  t ransfomat iou .  Yet, 

t he  p r a c t i c a l  ob jec t ive  which ~.iyror' pursues is  t o  reduce computational 

requiraaents  by s u f f i c i e n t l y  near ly  achievfng s t a t i s t i c a l  independence 

between t he  n terms of t h e  sumnation i n  equation (3).  This approach 

seems t o  be so near ly  a c h a r a c t e r i s t i c  to be proven by the  r e s u l t s  t ha t  

it  is re ta ined  a s  a consf ra in t  on the present  a n a l y s i s .  

Dalton'slanalysis considered that;, when normal 

basic  va r i ab l e s  and x,  have the  same populat ior~ mean, F P% P 
o r  

P, kt 

t2 has an F d i s t r i b ~ c i o n  wi th  one and \ + M, - 2 degrees of freedom 
PI ki 

when ( in  t h e  same coordinate  system) 2 and Hi random samples of c l a s se s  

k and i have means xk and x .  and var iances  c and - 
P P Y. PP k P P b ~ '  

because t has Student 's  t d i s t r i b u t i o n  wi th  \ + My - 2 degrees 
P, kt 

of freedom. Notice t h a t  F i n  equat ion (5) can be w r i t t e n  a s  

P ~ ,  k!2 



i 

Then, when the  two c l u s t e r s  a r e  of equal s i z e  and g ive  equal est imators  

of variance c ,  the  bracketed term i n  equation (6) i d e n t i f i e s  w i t 5  t he  
PP 

rerm being swned i n  equation (3) and i s  otherwise a l s o  an appropriate  
9 

average f o r  c for  t he  two c l u s t e r s .  In a s imi l a r  manner the t e r n  2n, 
PP 

1 :  already mentioned i n  equation (3) ,  came by l?p lac ing  ( C. + c ) /  c e  BP K PP e ,p 

r 
i by 2 .  Although equatiou <3) i s  a l ready appropriate  for use i n  t he  next 

s tage  t o  c l a s s i f y  an individual  prospective member of a c l a s s ,  s p e t . r _ v  

seems t c  requi re  f o r  the  present s t age  (when two c l u s t e r s  are t o  be merged) 

t h a t  t he  bracketed term i n  equation (6) should rep lace  t h e  term being 

sumned i n  equation (3) ;  i .e. ,  

The two f a c t o r s  i n  equation (7) a r e  not s t a t i s t i c a l l y  

independent. However, they can be t r ea t ed  a s  s t a t i s t k a l l y  independent 

for  t he  purpose of ident i fy ing  parameter combinatiou regions over which 

the  r e l a t i v e  v a r i a t i o n  of one of t h e  f a c t o r s  is mall r e l a t i v e  t o  t h a t  

of t he  other  fac tor .  The expected value y, and variance a2 
F ~ ,  ke F ~ ,  

of each of t he  n terms F 
Ps kJL 

i n  equation (7) a r e ,  by Reference 5, 



Cmputat ious involving p a i r s  of c l u s t e r s  can be made 

under the  transformation pecul ia r  t o  e i t h e r  c l u s t e r  i n  the  p a i r ,  but 

not both transformations together .  A p r a c t i c a l  expedient ~ o u l d  be t o  

use only the  transformation determined f o r  t he  l a rge r  one of t he  two 

c l u s t e r s .  I n  t h a t  case,  i n  equations such a s  (5) and (6) one would 

replace the variance of the  smaller one by t h  variance of the  l a rge r  

one of t he  two c l u s t e r s ;  e.g., s e e  equation (20). Then, t he  s t a t i s t i c a l  

independence provided by the  transformation gives the  mean and variance 

of t h e  surmation of t h e  n terms as n times the  r e s p e c t i ~ e  values f i r  the  

individual  terms. Therefore, t he  expected value i~ and variance a* of 
T2 T2 

the  bracketed f a c t o r  T2 i n  equation (7 )  a r e  

Let T:ln represent  t he  coe f f i c i en t  f ac to r  i n  equation (7) i n  which each 

of t he  n Wependent  standard deviat ions c1I2 has an expected value 
PP 

*jl 0 and a var iance which, by Reference 5, can be taken a s  approximately 

02/2Mk. Than n products of such s t a t i s t i c a l l y  independent f ac to r s  has 

a mean CL which is 
T1 



Within t he  accuracy of a f i r s t  order  theory f o r  t he  propagation of e r r o r ,  

t he  var iance of TI can be approximated by 

But i f  t h e  expected value of T i s  (bl G ) ~  i n  equation (12), what can 1 

one bes t  say might be t he  expected value of T ~ ~ ~ ~ ?  Of course it would 

depend on t h e  d i s t r i b u t i o n  function. With ERTS data ,  tl..e value of n i s  

4; s o  one wants t h e  expected va lue  of a square roo t .  Also, one knows 

t h ~ t  t h e  r e s u l t  T 
1 
'In i s  t h e  geometric mean of t h e  var iances  of t h e  

bas i c  var iab les .  Therefore,  i t  may be  s u f f i c i e n t l y  accura te  t o  

2 approximate it by the  2/n power of (bl D ) ~ ,  which is  (bl o )  . The 

-variance of T 2/n,  by a f u r t h e r  app l i ca t i on  of f i r s t  order  theory of 1 

e r r o r  propagation, i s  



where vaiues of b, as a function of M, a r e  tabulated i n  Refereuce 5 - 4 

(wherein bl is ca l led  b(n) and M. is ca l led  n). 

Thus, t o  t: e extent  t h a t  the  two fac tors  for  S-1 

i n  eqvat ion (7) can be considered st a t  i s t i c a l l y  independent, the  expected 

v a l w  of S-' i s  

Then, by a fur ther  applicat ion of t h e  f i r s t  order approximation of 

e r ro r  propagation, the  vari-e of s-I is, r e l a t ive ly ,  

Thus, the  expected value and variance of S-1 a r e  both proportional t o  n, 

but the  r a t i o  of the r e l a t i v e  contributions t o  the  variance of s - ~  due 



t o  the two fac tors  i n  equation (7) is independent of n. When the 

two c lus te r s  k and k a r e  the same s ize ,  then the  second fac tor  i n  

equation (7) makes a contribution t o  the t o t a l  variance which decreases 

from 45 percent for two c lus te r s  of s i z e  sever each, but remains very 

nearly a constant 113 of the  t o t a l  variance fo r  any c l u s t e r  s i z e  of 10 

o r  more. So, the  assumption of s t a t i s t i c a l  independence Setween the  two 

fac tors  i n  equation (7) vould seem t o  bs  problematical for  g e t t i q  any 

accurate estimate of the  expected value of s - '~  etc.,  which Jaroe2 

pursued i n  his equation (29). However, there  seems t o  be no easy a l t e r -  

aa t ive  t o  choosing some reasonable approximation t o  a decision rule which 

would merge two c lus te r s  i f  the  sumat ion i n  equation (7) would not 

exceed i t s  expected value plus the  product of some parameter C (which 

may be a constant or  a function of n, see the  l a s t  paragraph i n  t h i s  

section) and the  theore t ica l  value of t h e  standard deviation of the  

sumnation; i. e. , 

where F is given by equation (5), P is given by equation (8), 
P I  F ~ ,  l'k 

and crF is  the  square root  of the variance i n  equation (9). Then, 
P? 

by subbti tut iag from the  c i t e d  equations in to  equation (18) and 

rearranging the  material,  one gets  



where, ye: rigorously, the ternis on the r igh t  side are  the expected 

value and C standard deviations of the l e f t  side. One can nav propose 

that ,  i n  equation (19), the factors involving the sums of the sample 

zizes might should be eliminated as  a practical  expecient. The elimi- 

nation of the factor on the l e f t  s ide  would account for  most of the error,  

would be of no pract ical  consequence for  large clusters;  i t  would cause 

an error i n  the  mean of only 4 percent when the sum of the two clusters  

is 100, and t h i s  voxld not exceed 117 of the standard deviation when 

the d e r  of channels n does not exceed 24. In practice, the  given 

example is not intended t o  suggest any such s i ze  as a later l imit  for  

c lus ter  size;  most clusters  are larger than aay permitted m i n i m u m  s ize ,  

and typically the combined s i z e  cf two clusters  is considerably larger 

than twice q minbm size. Therefore, as  a more pract ical  expedient 

than the more rigorous equation (19), an appropriate decision ru le  would 

seem to  be tha t  two clusters  o r  classes k and R of sizes % aud Hi should 

be combined into  the  same c lass  when 

Let the  designatione of the c lusters  k and II be such tha t  M 2 2 % -  

Then, by the expedient which was discussed i n  the paragraph follaving 

equation (9), by replacing Ck with C and using the transformation 
PP PP 11 



determined for  c lus ter  2 i n  the sumnation on the l e f t  side,  the decision 

ru le  becomes 

the 

the 

the 

ted 

the expected value of 

merging t w o  clusters,  

term i n  the sumnation 

~ a ~ r o e ' s ~  resu l t s ,  both in h is  equation (19 )  for 

-1 
S and i n  h i s  equation (30) decision ru le  for  

wocld seem t o  require tha t  the denominator i n  each 

i n  equation (3) (Jayroe's2 equation (28)) would be 

variances with respect t o  the  m a s  instead of the variances of 

variables before they a re  averaged, Therefore, it would seem that  

2 
c r i t e r ion  which Jayroe has i n  h i s  equation (30) exceeds the expec- 

value of the indicated suamation by a factor which would be approxi- 

mately half of the s i ze  of a cluster. One would expect that  the model In 

that  form might show a tendency to  combine c lusters  excessively. 

.3 
Jayroe- notes tha t  the decision rule,  h i s  equation 

(30), is a hyperellipse i n  the principal a x i s  coordinates; that  seems 

yet t o  be t rue  with equation (20). IIe says tha t  the threshold i n  the 

decision ru le  (the r ight  s ide  of the equation) is independent of the 

c luster  and depends only on the dhension n of the feature space; that  

is t rue  a lso i n  equation (20). However, .Jayroe2 added: "Thus, i f  an 

e l l i p t i c a l  boundary decision ru le  is used i n  the principal axis coordi- 

nate system, the theorem can be extended t o  say that  the diagonal trans- 

formation is not needed and only the eigenvector transformation is 



needed since the  threshold can always be wri t ten  as some constant times 

[:he geometric mean of the  n variances of c lus te r  2 ," which is  the  1 - 

coeff ic ient  fac tor  T1 2'n i n  equations (3) and (7) with i t s  expected 

value and variance approximated i n  equations (15) and (14), respectively. 

Jnfortunately, though, both the  expected value and the  variance af the 

c i t e d  function depend on the unknown variance c2 of the  population of 

which the  given c lus te r  is only a random sample of s i z e  MR. it is 

agreed tha t  the  diagonal t ransfornation is not needed fo r  computations; 

it does, howwer, show the  o r ig in  and context of the  equation (20) 

decision rule. The sample means and variances which a re  used i n  the 

m t i o n  on the  l e f t  s ide  of equation (20) a r e  given by ~ a y r o e ' s *  

equations (17) and (18), without t h e  diagonal trarlsfonaations; they 

do, though, presv.ppose t h a t  the  computations are done in principal  axis  

)coordinates i n  order t h a t  the  n terms i n  the  sumat ion i n  equation (20) 

a r e  s t a t i s t i c a l l y  independent. 

The pr incipal  axis  of c lus te r s  which are random 

s.anples from the  same population w i l l  have some d i s t r ibu t ion  with respect 

t o  t h e  p,,acip;ll axis  of the  population. Thus, the principal  axis fo r  

c lus te r  k w i l l  generally be d i f fe ren t  from those fo r  c lus te r  i ,  and 

di f ferent  £ran those which f o l l w  from combining the  two clusters .  It 

Ls expected tha t  it w i l l  be su f f i c ien t ly  accurate t o  use t h e  computational 

exlledient L Jch ignores the  d i s t inc t ion  c i t ed  because the  hypothesis 

b e i ~  ':rsted by t h e  equation (20) decision ~ u i e  io   hat the  two c l u s t s r s  

w e  from the  same population. 

.Tayroe's2 model involves two determinations of h i s  

dccision rvla, h i s  equation (30), by reversing the  ro les  of the  two 

c1ustei.n because t h a t  equation is not symnetric w i t h  respect t o  the  two 



c lus te r s  k and P .  The proposed revised decision ru le ,  equation (20), 

w i l l  require only half as much computation because i t  computes a trans- 

fonnation for only the  larges t  one of the two clus ters .  

2 
In  Jayroe's model, using h i s  equation (30) as  a 

decision r u l e  for  combining c lus te r s  o r  c lasses ,  it  i s  not l ike ly  tha t  

a suff ic ient  number of classes would tend t o  remain for  some purposes. 

With equation (20), however, the  number of c lus te r s  o r  c lasses  which w i l l  

remain d i s t i n c t  w i l l  depend on the  value chosen fo r  the  adjustable para- 

meter C. Three considerations are evident: (1) a l l  c lus te r s  which 

r e p r e s e ~ t  the same population c lass  should be mergeci, (2) unlike classes 

should not be merge6 except, (3) when there  a r e  more s t a t i s t i c a l l y  

d i s t i n c t  classes than some upper l i m i t  which must be imposed as a canpu- 

t a t iona l  o r  other constraint ,  then fur ther  merging is  necessary. The 

s t a t i s t i c a l  s ignif icance of values of C, except fo r  the  smaller c lus ters ,  

is i l l u s t r a t e d  approximately by: (1) a value of C of -(1 + u/100) 

would combine a l l  pa i r s  of c lus te r s  which show less than a 10 percent 

confidence level of being from d i f i e r e n t  populations, (2) a value of 

C of -(2/3)/,/Zii would combine no c lus te r s  which d i f f e r  by more than a 

50 percent confidence level ,  and (3) a value of C of 4/3 would combine . 

a l l  c lus te r s  except those which s h w  a t  l e a s t  a 90 percent confidence 

of d i s t i n c t  populations. 

b, Order of Merninq 

In Jayroe' s2 model the  distance betw een c lus te r  

centers was not considered i n  choosing which pa i r  of c lus te r s  should 

be tes ted  fo r  merging. It would seem t h a t  the  order of merging would 



e f f e c t  the  qua l i ty  of the  r e su l t s .  Some of the  computation time which 

i s  saved by using eqaation (20) can well be expended toward t h i s  improve- 

ment. When, i n  the  course of the  analysis ,  there  remain K c lus te r s  o r  

c lasses  then there  corresponds a square s y m e t r i c  matrix of center  

separation values which upon being ranked have some smallest value, 

possibly repeated. The corresponding p a i r  of c l u s t e r s  k and g should be 

tes ted  by equation (20) t o  see i f  they should be merged. I f  they a r e  

merged, then i n  t h e  matrix columns k and II and rows k and Q a r e  deleted 

and a r e  replaced by one new row and colunn. The smallest value is  again 

sought, etc .  But i f  c l u s t e r s  k and L are not merged, then t h e i r  element 

i n  the  matrix is replaced by a number l a rge r  than the  l a rges t  element 

before proceeding, and another matrix of uncombinable pa i r s  is begun 

whose elements are the  values of the  l e f t  s i d e  of equation (20), e tc .  

Another decision r u l e  w i l l  be needed so  t h a t  when t h e  distance between 

centers  exceeds a c e r t a i n  value the  equation (20) test w i l l  be skipped 

Then, i f  the  number of remaining c l u s t e r s  o r  c lasses  exceeds the  maxi- 

mrrm allowable number, any fur ther  reduction i s  made by using the  matrix 

of computed values of the  l e f t  s ide  of equation (20), so f a r  a s  it had 

been used; the  smallest element would idei l t i fy the  p a i r  t o  be merged 

even though they qual i f ied  aa d i s t i n c t  classes.  

4. Staste Four: Classif i c s t i o n  

The decision r u l e  which ~ a ~ r o e ~  uses, h i s  equation (31), 

for deciding when an individual element can be added t o  a pa r t i cu la r  

claso i n  the  f i n a l  c l a s s i f i c a t i o n  is t h a t  the  sumnation i n  equation (3) 



must not exceed 2n. The asplanation tha t  the  fac tor  2 is  used because 

the  exponent i n  a normal d i s t r ibu t ion  is divided by tna t  fac tor  is not 

convincing. A s  he says, though, i t  does seem appropriate t o  use a less 

r e s t r i c t i v e  c r i t e r i o n  than tha t  which would be r i g h t  for  deciding about 

merging two clus ters .  Actually, considering t h a t  the  mean and variance 

are approximately n and 2n fo r  la rge  c l u s t e r s ,  t he  given c r i t e r i o n  

amounts t o  adding ( n l  standard deviat ions t o  the  mean, which, with 

the  12-channel da ta  reported2, would c l a s s i f y  an Lndividu~J resolu t ion  

element in to  a c l a s s  unless i ts  di f ference  is s ign i f i can t  a t  a 98 percent 

confidence level .  With &channel data,  a s  i n  ERTS , the  confidence would 

be 90 percent instead of 98 percent with the  same decision r u l e ,  Jayroe's 
2 

equation (31) . 
It seems prudent t o  derive more rigorously a decision 

r u l e  which does not presuppose large  c l u s t e r s  f o r  c lass i fy ing individual 

resolut ion elements i n t o  established c lus ters .  For t h i s  purpose the  

presupposition of normal var iables  ic pr inc ipal  ax i s  coordinate systems 

w i l l  be continued, and the  same notat ion a s  i n  equation (3) except t h a t  

v is the  coordinate of an i n d i v i d u d  resolu t ion  element instead of t h e  
P 

1 sample mean of a c lus ter .  Dalton showed t h a t  

where each of the  n t e r m  on the  r i g h t  has an F d i s t r ibu t ion  with one 

and M -1 degrees of freedom, and they a r e  s t a t i s t i c a l l y  independent due a 
t o  the  pr inc ipal  axes coordinates. Then, f o r  Me 2 6 t h i s  gives, i n  the  



form nf a decision r u l e  a s  a function l e s s  than or  equal t o  i t s  expected 

value p l t s  the  product of some parameter D and the standard deviation, 

5. Further  passe^ 

2 Jayroe explaios tha t  h i s  program has the  capabil i ty,  

when the  s i z e  of t h e  pxp ar ray  for  clusLer se lec t ion has caused incom- 

p le te  c lass i f i ca t ion  of the  ground scene, t o  rsduce the  s i z e  of the  ar ray  

i n  order t o  search fo r  fur ther  c lus te r s  and t o  nake a further  c lass i f i ca -  

t i o n  of the  data. It wmld appear tha t  t h i s  is b t t t e r  than using a smaller 

array i n  the f i r s t  place. This i s  because, as ~ a ~ r o o - ~  says, "The fixed- 

shape array,  i f  chosen large  emugh, w i l i  not permit the  mixing of features 

because the  open gaps i n  the  boundaries w i l l  be so  small cmpared t o  

the ar ray  s l z a  tha t  the  array w i l l  not be able  t o  pass through the  
2 

boundary." Jayroe's statement about the  10 x 10 array, tha t  the mini- 

mum sample s i z e  which it provides (100) is very adequate fo r  s t a t i s t i c a l  

c a l c u l a t i o ~ s ,  inadvertently may give the  impression tha t  a smaller ar ray  

would give a sample s i z e  which w ~ u l d  s t a t i s t i c a l l y  not be adequate fo r  

the  determination of (1) whether o r  not two such c lus te r s  should be 

merged or  (2) whether o r  not the  c lass  which it might represent should 

a l so  contain a par t icular  individual resolution element which i s  t o  be 

c lass i f ied .  However, equations (21) and (22) a r e  based or, the  F d i s t r i -  

butions instead of the  chi-square d is t r ibut ion,  the  s t a t i s t i c a l  require- 

ment fo r  which is  t h a t  the  c lus te r s  must not have less than 6 members. 



I n  e i the r  case the basic var iable  i c  presupposed t o  be d is t r ibuted 

approximately normally. The s t a t i s t i c a l  reason that. larger c lus te r s  are  

needed when one does not use t h e  F d is t r ibut ions  is t h a t ,  i n  order t o  use 

the  chi-square d i s t r ibu t ion  for  the  sumnation on the  l e f t  s ides  of 

equations (21) and (22), the  indicated means and variances must be pre- 

supposed t o  be ident ica l  with those of the  (unknown) population of which 

the c lus te r  is  a random sample of s i z e  Mg,. 

C . Conclusions and Recomnendat ions 

.Tayroe's2 decision c r i t e r i o c  t o  c lass i fy  a resolution element 

a s  being homogeneous is  (his  equation (16)) 

and tha t  otherwise the  element is a boundary. It seems l ike ly  tha t  the 

c r i t e r i o n  could be improved by writ ing i t  as  

and experimentally checking whether some other value of B i n  the  v i c i n i t y  

of 1 might give a model which would have a be t t e r  balance between 

effectiveness and computation requirement. 

2 The decision r u l e  which Jayroe uses t o  see  i f  c lus te r s  k 

and & should be merged, when the  c lus te r s  have indtvidual t ransfomations 

giving s t a t i s t i c a l  independence of t h e i r  a-channel spect ra l  data, is  

(his  equation (30)) 



provided tha t  the equation i s  

L n  (23) 

also s a t i s f i e d  when the ro les  of k and R 

are  reversed. Instead, a be t t e r  decision ru le  would seem t o  he,  where 

k and t are  such tha t  ME g \.. 

where % and MA a r e  the sample s i zes  01 c lass  (or c lus te r )  k and 2,  and 

where C is  the  number of standard deviations from the  expected value of 

the  l e f t  side. Although the  best  value for  C might be i n  the  v ic in i ty  

of zero, some axperiments with data might show a be t t e r  value. The 

c lus te r s  with the  c loses t  centers  should be tes ted  fo r  merging before 

t e s t ing  more clistant c lus ters .  

The decision r u l e  which ~ a ~ r o e *  uses t o  see Lf an individual 

resolution element should be added t o  a c lass  2 is  (-1-,n=e's2 equatios 

Instez3, a be t t e r  decision r u l e  would seem t o  be 



where D is t h e  number of s t andard  d e v i a t i o n s  from t h e  expected va lue  of 

t h e  l e f t  s i d e .  Because h i s  sample s i z e s  were s u f f i c i e n t l y  l a r g e  f o r  t h e  

purpose,  ~ a y r o e ' s ~  cho ice  i n  equat ion ( 2 4 )  corresponds t o  adding (1112) 112 

s tandard  d e v i a t i o n s  t o  expected v a l u e  n ,  and he  was us ing 1 2  channels of 

d a t a .  Th i s  would imply a v a l u e  f o r  D of A, but some f u r t h e r  experiments 

wi th  equat ion (5) might show a b e t t e r  v a l u e  f o r  D. 

Some exper imental  e f f o r t  is needed t o  e s t a b l i s h  t h e  b e s t  combi- 

n a t i o n  of va lues  of B ,  C ,  D, and p ,  where p is  t h e  s i z e  of t h e  pxp a r r a y  

which determines t h e  minimum s i z e  of a c l u s t e r  and where B ,  C ,  and D a r e  

t h e  model p a r m e t e r s  i n  equa t ions  ( 2 ) ,  ( 2 0 ) ,  and ( 2 2 ) .  



APPEND l X A: Reference 4 

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 
GEORGE C. MARSHALL SPACE FLIGHT CENTER 
MARSHILL SPACE FLIGL(T C E \ T i *  ALL!- ~ V A  25.312 

TO : SbE-COMP-RRV/Mr. Jack A. Jones 

FROM : SLE-AERO-YF/!tr. Charles C. Dalton 

September 19, 1973 

SUBJECT: Request f o r  Program of Algorithm from NASA TMX-64762 and 
MSFC Memo SSE-ALRO-YF-2-73 on Account No. 177-32-71 (Task 
Agreement J99) 

The sub jec t  re?or t  and memo which were recent ly  given by me o f f e r  a 
method f o r  non-supervised c l a s s i f i c a t i o n  and mapqing of remote sensing 
mul t i sp rc t r a l  data .  A program, which please have prepared, w i l l  enable 
u s  t o  study the  computational performance and e f f i c i ency  of t h a t  nethod 
v i s  a v i a  our  o ther  methods. The subjec t  a lgori thm, i n  somewhat f u r t h e r  
des i red  d e t a i l ,  is a s  follows: 

ALGORITHM FOR UNSUPERVISED CLASSIFICATION USING F DISTRIBUTIONS 

For each c l a s s  o r  prospect ive c l a s s  one needs values f o r  t he  follow- 
ing parameters: 

m - number of members ir, t h e  c l a s s  

- 1 m 
- I: L, c l a s s  mean i n  each c!lannel k 1, 2 ,  . . . , 1 Xk m a-1 

1 m 
,,2 = - - 2 
k L' (L- $) , class var iance  i n  ench channel 

a-1 

1 1 - 
QU = ; L [(\a- <) 

atL) l2 each p a i r  of channels k and t 
a-1 



" CF = Kup where K is the number of chacuels 

Also, for each pair of established c la s se s  i and j containing m and 
m members one needs values for the f o l l ~ w i n g  parmeterst i 
j 



The two other  formulas which a r e  always u:.ed together ,  with a purpose 
which depends on what datum is  subs t i tx ted  f o r  t h e  parame-er 5, a r e  

Preliminary s tep .  Is t h i s  a re - s t a r t ?  No: go t o  s t ep  1. Yes: 
go t o  s t r  - 25. 

Step 1. Read contro l  p a r a s t e r s  A O' A1s M(> - 61, W , %, P, and 

%- 
max 

Step 2. Read Zh* f i r s t  M samples. 

Step 3. Calculate parameters for prospective class.  
- 2 

Step 4. With the  x,, sk, e:c., from s t e p  3, ca lcu la te  a value of 

A in equation (54) for-each of the  H samples by using the  values of \ 
f o r  th'c par t i cu la r  sample ia equation (54) with t h e  s inus  sign. Does 
the  l a rges t  value of A s a t i s f y  A < A ? Yes: go t o  s t ep  7. No: go t o  

0 s t e p  5 .  

Step 5. Discard the  f i r s t  sample accumulated. 

Step 6. Read a new sample, then go t o  s t a p  3. 

Step 7. Designate a new c l a s s  having the  parameters extant, 
iocl..iuing the  c l a s s  mean of the  sample values o f  A, say A. 

Step 8. Does the  program teach the end o f  t h e  sample? Yes: go 
t o  s t e p  19. No: go t o  s t ep  9. 

Step 9. Does the  nmber of c l a s ses  U s a t i s f y  W ZW ? Y e s :  go 
to s t e p  12. No: go t o  s t e p  10. max 

Step 10. Calculate clam-pair parameters A f o r  all combinations 
of c lasses  i n  pa i rs .  i;l 



Step 11. Combine the  two c lasses  i and j which give the  smallest  
pair-parameter A and compute the  single-class parameters f o r  the  

il 
r e su l t ing  c la s s ,  including x, e tc .  Co t o  s t e p  L2. 

Step 12. Read a new sample. 

Step 13. By using the  values of xk from the new sample i n  equation 

(54) with the  plus s ign,  c laculare  a value cf A for each of t h e  W established 
c lasses  according t o  t h e i r  given values of m, - 2 \, sk, UZF, Does 

the  smallest one of the  n values of A satgsfy A - < I? Yes: add t h e  sample 

t o  tha t  c l a s s ,  revise  the  parameters of t h a t  c l a s s  and go t o  s t e p  8. No: 
put the  sample i n  hold and go t o  s t e p  14. 

Step 14. Has the amber  of samples i n  hold reached M? No: go t o  
a tep  12. Yes: go t o  s t e p  15. 

Step 15. Calculate parameters f o r  prospective class. 
- 

Step 16. With 5, s:, ecc. from s t e p  15, c a l c u l a t e  a value of A 
in equation (54) f o r  each of the  M samples by us ing the  values of 5 
f o r  the  pa r t i cu la r  sample i n  equation (54) with t h e  minus sign. Does 
t h e  l a rges t  vaiue of A s a t i s f y  A < Ao? Yes: go t o  s t e p  17. No: 
discard the  f i r s t  one of the  M samples held f o r  s t e p  15 and go t o  s t e p  12. 

Step 17. Designate a new c l a s s  v i t h  the  parameter values which are 
extant  (from s t e p  15) and the  mean A of t h e  sample values of A. 

Step 18. Empty t h e  hold from s t e p  14 and go t o  s t e p  8. 

Step 19. Subtract one from t h e  value re t a faed  f o r  the  P parameter 
and r e t a i n  the  new value. Is the  result less than one? Yes: go t o  
s t e p  20. No: go t o  s t e p  25. 

Step 20. Is the  sadlest A l e s s  than +? Yes :  go t o  s t e p  21. 
No: go t o  s t ep  22. i j 

S t e p  21. Combine t h e  c l a s ses  i ard j, compute t h e  parameters 
(including A) of the  r e su l t ing  c l a s s  k &ad the  parameters G r e l a t i n g  it 
to  each other  c l a s s  a ,  and go t o  s t ep  20. 

Step 22. Yrepara a print-outfread-in tape  v i t h  re-s tar t  v e r s a t i l i t y .  



Step 23. P r in t  out  the  c l a s s i f i c a t i o n  map, the  c l a s s  p a i r  parameters - 
A and f o r  each c l a s s  the  parameters m, 

13 
A , and K including a l l  2' 'k' kt 

channels k and p a i r s  of channels k and E. Iden t i fy  the print-out .  

Step 24. Stop. 

Step 25. Is t h i s  a re-s tar t  run? No: go to s t e p  28. Yes: read 
revised control  pa rmete r s  W mar' 

If, P, and Ag and the  re-s tar t  tape  (of 
s t e p  22) and go t o  s t e p  26. 

Step 26. Is W grea ter  than W ? No: go t o  s t e p  28. Yes: go t o  
s t e p  27. max 

Step 27. Combine t h e  p a i r  of c l a s ses  i and j, which correspond t o  
the  smallest A i n t o  a s ing le  c l a s s  k, compute t h e  c l a s s  parameters and 

ij ' 
t he  which r e l a t e  it t o  each o ther  c l a s s  R, and go t o  s t e p  26. 

Step 28. The extant  membership of the  e s t a b l i s h  c l a s ses  r e su l t ing  
from the  completed pass, the  r e - s t a r t  a f t e r  a p r i o r  c l a s s i f i c a t i o n  o r  - 
standardized pre-classif icat ion,  give parameter values m, xk ,  s , vEF, k 
and CzI.(for equation (54)) vhich r e t a i n  throughout a new complete pass 

of the  da ta  ( t o  be revised only at the  end of t h e  da ta  pass) f o r  a revised 
c las s i f i ca t ion .  

Step 29. Read the  upcoming sample of d a t a  i n  t h e  most economical 
order  (e.g., f i r s t ,  second, ...). 

Step 30. Use t h e  values of 5 f o r  the  sample and t h e  plus s ign i n  
equation (54) t o  ca lcu la te  a value of A f o r  each of the  W classes.  

Step 31. Classify the  sample by the  c l a s s  wi th  the  smallest  A, 
which vclue remember ( f o r  s t ep  35). 

Step 32. Does t h e  program reach the  end of t h e  sample sequencs? 
Y-: go t o  s t e p  33. No: go t o  s t e p  29. 

Step 33. The W established c las ses  now have new wmberships but 
values from 

class 1 now have less 
to  s t e p  35. 

the  previous s l a s s i f  ica t ion .  Does the  s a l e s t  
than s ix  members? Yes: go t o  s t e p  34. No: go 



Step 34. The smallest class i has some smallest A identifying i ts  
i j  

closest neighbor c l a s s  j. Is A less than 
ij  

? Yes: Combine c lasses  i 

and .j and go t o  s t e p  33. No: hold c l a s s  i f o r  s t e p  35 and go t o  s t e p  33. 

Step 35. By the  new memberships, revise  the parameters f o r  a l l  c lasses  
with not less than six members and revise  a l l  iqj for  which both clas 2s 
i and j are not less than s ix .  Those c lasses  wi th  less than six members 
must r e t a i n  a value of s i x  f o r  m f o r  any next c lass i f i ca t ion .  Go t o  s t e p  
19. 

- L ~ ~ L G % G  
Charles C. Dalton 
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Aerospace Environment Division 
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